Vector
Matrix
Array
Data Frame
List


Image Credit: venus.ifca.unican.es

Image Credit: venus.ifca.unican.es
Write an R code to create the following vector?
[1] 1 2 3 4 5 5 4 3 2 1Write an R code to create the following vector?
[1] 1 2 3 4 5 5 4 3 2 1c(1, 2, 3, 4, 5, 5, 4, 3, 2, 1)Write an R code to create the following vector?
[1] 1 2 3 4 5 5 4 3 2 1c(1, 2, 3, 4, 5, 5, 4, 3, 2, 1)
c(1:5, 5:1)
02:00
a <- c(1:5, 5:1)a
[1] 1 2 3 4 5 5 4 3 2 1names(a) <- c("a1", "a2", "a3", "a4", "a5", "b1", "b2", "b3", "b4", "b5")a
a1 a2 a3 a4 a5 b1 b2 b3 b4 b5 1 2 3 4 5 5 4 3 2 1a
a1 a2 a3 a4 a5 b1 b2 b3 b4 b5 1 2 3 4 5 5 4 3 2 1a * c(10, 100)
a1 a2 a3 a4 a5 b1 b2 b3 b4 b5 10 200 30 400 50 500 40 300 20 100Select some particular elements (i.e., a subset) from a vector.
myvec <- 1:20; myvec
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20myvec <- 1:20; myvec
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20myvec[1]
[1] 1myvec <- 1:20; myvec
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20myvec[1]
[1] 1myvec[5:10]
[1] 5 6 7 8 9 10myvec[-1]
[1] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20myvec[-1]
[1] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20myvec[myvec > 3]
[1] 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20myvec[0]
integer(0)myvec[]
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20myvec
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20a from myvec (cont.).a; myvec
a1 a2 a3 a4 a5 b1 b2 b3 b4 b5 1 2 3 4 5 5 4 3 2 1 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20myvec %in% a
[1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSEmyvec[myvec %in% a]
[1] 1 2 3 4 5 myvec
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20b <- 100:105b
[1] 100 101 102 103 104 105myvec[myvec %in% b]
integer(0)Generate a sequence using the code seq(from=1, to=10, by=1).
What other ways can you generate the same sequence?
Using the function rep , create the below sequence 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4
03:00
covid <- c(100, 30, 40, 50, -1, 100)covid
[1] 100 30 40 50 -1 100covid[1] <- 50000covid
[1] 50000 30 40 50 -1 100covid <- c(100, 30, 40, 50, -1, 100)covid
[1] 100 30 40 50 -1 100covid[1] <- 50000covid
[1] 50000 30 40 50 -1 100covid[covid < 0] <- 0covid
[1] 50000 30 40 50 0 100covid[c(1, 2)] <- c(1000, 10000)covid
[1] 1000 10000 40 50 0 100Matrix is a 2-dimentional and a homogeneous data structure
Syntax to create a matrix
matrix_name <- matrix(vector_of_elements, nrow=number_of_rows, ncol=number_of_columns, byrow=logical_value, # If byrow=TRUE, then the matrix is filled in by row. dimnames=list(rnames, cnames)) # To assign row names and columns
Example
matrix(1:6, nrow=2, ncol=3)
[,1] [,2] [,3][1,] 1 3 5[2,] 2 4 6cont.
matrix(1:6, nrow=2)
[,1] [,2] [,3][1,] 1 3 5[2,] 2 4 6matrix(1:6, ncol=3)
[,1] [,2] [,3][1,] 1 3 5[2,] 2 4 6values <- c(10, 20, 30, 40)matrix1 <- matrix(values, nrow=2) # Matrix filled by columns (default option)matrix1
[,1] [,2][1,] 10 30[2,] 20 40matrix2 <- matrix(values, nrow=2, byrow=TRUE) # Matrix filled by rowsmatrix2
[,1] [,2][1,] 10 20[2,] 30 40byrow=TRUE: matrix is filled in by row
byrow=FALSE: matrix is filled in by column
Default is by column
rnames <- c("R1", "R2")cnames <- c("C1", "C2")matrix_with_names <- matrix(values, nrow=2, dimnames=list(rnames, cnames))matrix_with_names
C1 C2R1 10 30R2 20 40class function on vectors vs matricesvec <- 1:10class(vec)
[1] "integer"mat <- matrix(1:10, ncol=5)class(mat)
[1] "matrix" "array"matrix1
[,1] [,2][1,] 10 30[2,] 20 40matraix_name[i, ] gives the ith row of a matrix
matrix1[1, ]
[1] 10 30matraix_name[, j] gives the jth column of a matrix
matrix1[, 2]
[1] 30 40matraix_name[i, j] gives the ith row and jth column element
matrix1
[,1] [,2][1,] 10 30[2,] 20 40matrix1[1, 2]
[1] 30matrix1[1, c(1, 2)]
[1] 10 30Beware!
amat <- matrix(10:90, 3, 3); amat
[,1] [,2] [,3][1,] 10 13 16[2,] 11 14 17[3,] 12 15 18bmat <- amat[1:2,]; bmat
[,1] [,2] [,3][1,] 10 13 16[2,] 11 14 17class(bmat)
[1] "matrix" "array"Beware!
amat <- matrix(10:90, 3, 3); amat
[,1] [,2] [,3][1,] 10 13 16[2,] 11 14 17[3,] 12 15 18bmat <- amat[1:2,]; bmat
[,1] [,2] [,3][1,] 10 13 16[2,] 11 14 17class(bmat)
[1] "matrix" "array"cmat <- amat[1,]; cmat
[1] 10 13 16class(cmat)
[1] "integer"dmat <- amat[, 1]; dmat
[1] 10 11 12class(dmat)
[1] "integer"drop = FALSE
cmat <- amat[1,]; cmat
[1] 10 13 16class(cmat)
[1] "integer"cmat <- amat[1, , drop = FALSE]; cmat
[,1] [,2] [,3][1,] 10 13 16class(cmat)
[1] "matrix" "array"a <- matrix(1:9, ncol=3)a
[,1] [,2] [,3][1,] 1 4 7[2,] 2 5 8[3,] 3 6 9diag(a)
[1] 1 5 9a <- matrix(1:9, ncol=3)a
[,1] [,2] [,3][1,] 1 4 7[2,] 2 5 8[3,] 3 6 9a[1, 1] <- 100a
[,1] [,2] [,3][1,] 100 4 7[2,] 2 5 8[3,] 3 6 9diag(a) <- 0a
[,1] [,2] [,3][1,] 0 4 7[2,] 2 0 8[3,] 3 6 0cbind and rbindMatrices can be created by column-binding and row-binding with cbind() and rbind()
x <- 1:3y <- c(10, 100, 1000)cbind(x, y) # binds matrices horizontally
x y[1,] 1 10[2,] 2 100[3,] 3 1000rbind(x, y) #binds matrices vertically
[,1] [,2] [,3]x 1 2 3y 10 100 1000cbind and rbind (cont.)a <- matrix(1:3, ncol=3)a
[,1] [,2] [,3][1,] 1 2 3b <- matrix(c(10, 100, 1000), ncol=3)b
[,1] [,2] [,3][1,] 10 100 1000cbind(a, b) # binds matrices horizontally
[,1] [,2] [,3] [,4] [,5] [,6][1,] 1 2 3 10 100 1000rbind(a, b) #binds matrices vertically
[,1] [,2] [,3][1,] 1 2 3[2,] 10 100 1000Transpose
t(x)
[,1] [,2] [,3][1,] 1 2 3Matrix multiplication
y <- matrix(seq(10, 60, by=10), nrow=3)z <- x %*% yz
[,1] [,2][1,] 140 320Find x in: m*x=n
solve(m, n)05:00
^β=(XTX)−1XTY
05:00
a <- matrix(c(1:12), nrow = 3, ncol = 4) a > 10
[,1] [,2] [,3] [,4][1,] FALSE FALSE FALSE FALSE[2,] FALSE FALSE FALSE TRUE[3,] FALSE FALSE FALSE TRUEb <- matrix(1:4, ncol=4)
a > b # Error
b %in% a
[1] TRUE TRUE TRUE TRUEa %in% b
[1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSEclass(a %in% b)
[1] "logical"
data structures for storing higher dimensional data.
a homogeneous data structure.
a special case of the array is the matrix.
array(vector, dimensions, dimnames) #dimnames-as a list
a <- array(c(10, 20, 30, 40, 50, 60), c(1, 2, 3))a <- array(c(10, 20, 30, 40, 50, 60), c(1, 2, 3))a
, , 1 [,1] [,2][1,] 10 20, , 2 [,1] [,2][1,] 30 40, , 3 [,1] [,2][1,] 50 60a
, , 1 [,1] [,2][1,] 10 20, , 2 [,1] [,2][1,] 30 40, , 3 [,1] [,2][1,] 50 60a[1, 2, 3]
[1] 60a[, , 1] # Extract first entry
[1] 10 20a
, , 1 [,1] [,2][1,] 10 20, , 2 [,1] [,2][1,] 30 40, , 3 [,1] [,2][1,] 50 60a[1, ,] # All rows in each entry
[,1] [,2] [,3][1,] 10 30 50[2,] 20 40 60array functionmatrix(1:20, ncol=5)
[,1] [,2] [,3] [,4] [,5][1,] 1 5 9 13 17[2,] 2 6 10 14 18[3,] 3 7 11 15 19[4,] 4 8 12 16 2002:00
dim1 <- c("A1", "A2"); dim2 <- c("B1", "B2", "B3"); dim3 <- c("c1", "c2", "c3", "c4")z <- array(1:24, c(2, 3, 4), dimnames = list(dim1, dim2, dim3))z
, , c1 B1 B2 B3A1 1 3 5A2 2 4 6, , c2 B1 B2 B3A1 7 9 11A2 8 10 12, , c3 B1 B2 B3A1 13 15 17A2 14 16 18, , c4 B1 B2 B3A1 19 21 23A2 20 22 24dim1 <- c("A1", "A2"); dim2 <- c("B1", "B2", "B3"); dim3 <- c("c1", "c2", "c3", "c4")z <- array(1:24, c(2, 3, 4), dimnames = list(dim1, dim2, dim3))z
## , , c1## ## B1 B2 B3## A1 1 3 5## A2 2 4 6## ## , , c2## ## B1 B2 B3## A1 7 9 11## A2 8 10 12## ## , , c3## ## B1 B2 B3## A1 13 15 17## A2 14 16 18## ## , , c4## ## B1 B2 B3## A1 19 21 23## A2 20 22 24

Rectangular arrangement of data with rows corresponding to observational units and columns corresponding to variables.
More general than a matrix in that different columns can contain different modes of data.
It’s similar to the datasets you’d typically see in SPSS and MINITAB.
Data frames are the most common data structure you’ll deal with in R.

Image Credit: Hadley Wickham
Syntax
name_of_the_dataframe <- data.frame( var1_name=vector of values of the first variable, var2_names=vector of values of the second variable)
Example
corona <- data.frame(ID=c("C001", "C002", "C003", "C004"), Location=c("Beijing", "Wuhan", "Shanghai", "Beijing"), Test_Results=c(FALSE, TRUE, FALSE, FALSE))corona
ID Location Test_Results1 C001 Beijing FALSE2 C002 Wuhan TRUE3 C003 Shanghai FALSE4 C004 Beijing FALSETo check if it is a dataframe
is.data.frame(corona)
[1] TRUEcolnames(corona)
[1] "ID" "Location" "Test_Results"length(corona)
[1] 3dim(corona)
[1] 4 3nrow(corona)
[1] 4ncol(corona)
[1] 3summary(corona)
ID Location Test_Results Length:4 Length:4 Mode :logical Class :character Class :character FALSE:3 Mode :character Mode :character TRUE :1str(corona)
'data.frame': 4 obs. of 3 variables: $ ID : chr "C001" "C002" "C003" "C004" $ Location : chr "Beijing" "Wuhan" "Shanghai" "Beijing" $ Test_Results: logi FALSE TRUE FALSE FALSEmat <- matrix(1:16, ncol=4)mat
[,1] [,2] [,3] [,4][1,] 1 5 9 13[2,] 2 6 10 14[3,] 3 7 11 15[4,] 4 8 12 16mat_df <- as.data.frame(mat)mat_df
V1 V2 V3 V41 1 5 9 132 2 6 10 143 3 7 11 154 4 8 12 16Select rows
head(mat_df) # default it shows 6 rows
V1 V2 V3 V41 1 5 9 132 2 6 10 143 3 7 11 154 4 8 12 16head(mat_df, 3) # To extract only the first three rows
V1 V2 V3 V41 1 5 9 132 2 6 10 143 3 7 11 15tail(mat_df, 2)
V1 V2 V3 V43 3 7 11 154 4 8 12 16mat_df
V1 V2 V3 V41 1 5 9 132 2 6 10 143 3 7 11 154 4 8 12 16To select some specific rows
mat_df[4, ]
V1 V2 V3 V44 4 8 12 16index <- c(1, 3)mat_df[index, ]
V1 V2 V3 V41 1 5 9 133 3 7 11 15mat_df
V1 V2 V3 V41 1 5 9 132 2 6 10 143 3 7 11 154 4 8 12 16Select column(s) by variable names
mat_df$V1 # Method 1
[1] 1 2 3 4mat_df[, "V1"] # Method 2
[1] 1 2 3 4mat_df
V1 V2 V3 V41 1 5 9 132 2 6 10 143 3 7 11 154 4 8 12 16Select column(s) by index
mat_df[, 2]
[1] 5 6 7 803:00
Built-in dataframes
data(iris)
Use help function to find more about the iris dataset.
iris datasethead(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species1 5.1 3.5 1.4 0.2 setosa2 4.9 3.0 1.4 0.2 setosa3 4.7 3.2 1.3 0.2 setosa4 4.6 3.1 1.5 0.2 setosa5 5.0 3.6 1.4 0.2 setosa6 5.4 3.9 1.7 0.4 setosa
head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species1 5.1 3.5 1.4 0.2 setosa2 4.9 3.0 1.4 0.2 setosa3 4.7 3.2 1.3 0.2 setosa4 4.6 3.1 1.5 0.2 setosa5 5.0 3.6 1.4 0.2 setosa6 5.4 3.9 1.7 0.4 setosa

head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species1 5.1 3.5 1.4 0.2 setosa2 4.9 3.0 1.4 0.2 setosa3 4.7 3.2 1.3 0.2 setosa4 4.6 3.1 1.5 0.2 setosa5 5.0 3.6 1.4 0.2 setosa6 5.4 3.9 1.7 0.4 setosa
Use the R dataset “iris” to answer the following questions:
How many rows and columns does iris have?
Select the first 4 rows.
Select the last 6 rows.
Select rows 10 to 20, with all columns in the iris dataset.
Select rows 10 to 20 with only the Species, Petal.Width and Petal.Length.
05:00
cont.
Create a single vector (a new object) called ‘width’ that is the Sepal.Width column of iris.
What are the column names and data types of the different columns in iris?
How many rows in the iris dataset have Petal.Length larger than 5 and Sepal.Width smaller than 3?
05:00
Syntax
list_name <- list(entry1, entry2, entry3, ...)
Example
first_list <-list(1:3, matrix(1:6, nrow=2), iris)first_list <-list(1:3, matrix(1:6, nrow=2), iris)first_list
[[1]][1] 1 2 3[[2]] [,1] [,2] [,3][1,] 1 3 5[2,] 2 4 6[[3]] Sepal.Length Sepal.Width Petal.Length Petal.Width Species1 5.1 3.5 1.4 0.2 setosa2 4.9 3.0 1.4 0.2 setosa3 4.7 3.2 1.3 0.2 setosa4 4.6 3.1 1.5 0.2 setosa5 5.0 3.6 1.4 0.2 setosa6 5.4 3.9 1.7 0.4 setosa7 4.6 3.4 1.4 0.3 setosa8 5.0 3.4 1.5 0.2 setosa9 4.4 2.9 1.4 0.2 setosa10 4.9 3.1 1.5 0.1 setosa11 5.4 3.7 1.5 0.2 setosa12 4.8 3.4 1.6 0.2 setosa13 4.8 3.0 1.4 0.1 setosa14 4.3 3.0 1.1 0.1 setosa15 5.8 4.0 1.2 0.2 setosa16 5.7 4.4 1.5 0.4 setosa17 5.4 3.9 1.3 0.4 setosa18 5.1 3.5 1.4 0.3 setosa19 5.7 3.8 1.7 0.3 setosa20 5.1 3.8 1.5 0.3 setosa21 5.4 3.4 1.7 0.2 setosa22 5.1 3.7 1.5 0.4 setosa23 4.6 3.6 1.0 0.2 setosa24 5.1 3.3 1.7 0.5 setosa25 4.8 3.4 1.9 0.2 setosa26 5.0 3.0 1.6 0.2 setosa27 5.0 3.4 1.6 0.4 setosa28 5.2 3.5 1.5 0.2 setosa29 5.2 3.4 1.4 0.2 setosa30 4.7 3.2 1.6 0.2 setosa31 4.8 3.1 1.6 0.2 setosa32 5.4 3.4 1.5 0.4 setosa33 5.2 4.1 1.5 0.1 setosa34 5.5 4.2 1.4 0.2 setosa35 4.9 3.1 1.5 0.2 setosa36 5.0 3.2 1.2 0.2 setosa37 5.5 3.5 1.3 0.2 setosa38 4.9 3.6 1.4 0.1 setosa39 4.4 3.0 1.3 0.2 setosa40 5.1 3.4 1.5 0.2 setosa41 5.0 3.5 1.3 0.3 setosa42 4.5 2.3 1.3 0.3 setosa43 4.4 3.2 1.3 0.2 setosa44 5.0 3.5 1.6 0.6 setosa45 5.1 3.8 1.9 0.4 setosa46 4.8 3.0 1.4 0.3 setosa47 5.1 3.8 1.6 0.2 setosa48 4.6 3.2 1.4 0.2 setosa49 5.3 3.7 1.5 0.2 setosa50 5.0 3.3 1.4 0.2 setosa51 7.0 3.2 4.7 1.4 versicolor52 6.4 3.2 4.5 1.5 versicolor53 6.9 3.1 4.9 1.5 versicolor54 5.5 2.3 4.0 1.3 versicolor55 6.5 2.8 4.6 1.5 versicolor56 5.7 2.8 4.5 1.3 versicolor57 6.3 3.3 4.7 1.6 versicolor58 4.9 2.4 3.3 1.0 versicolor59 6.6 2.9 4.6 1.3 versicolor60 5.2 2.7 3.9 1.4 versicolor61 5.0 2.0 3.5 1.0 versicolor62 5.9 3.0 4.2 1.5 versicolor63 6.0 2.2 4.0 1.0 versicolor64 6.1 2.9 4.7 1.4 versicolor65 5.6 2.9 3.6 1.3 versicolor66 6.7 3.1 4.4 1.4 versicolor67 5.6 3.0 4.5 1.5 versicolor68 5.8 2.7 4.1 1.0 versicolor69 6.2 2.2 4.5 1.5 versicolor70 5.6 2.5 3.9 1.1 versicolor71 5.9 3.2 4.8 1.8 versicolor72 6.1 2.8 4.0 1.3 versicolor73 6.3 2.5 4.9 1.5 versicolor74 6.1 2.8 4.7 1.2 versicolor75 6.4 2.9 4.3 1.3 versicolor76 6.6 3.0 4.4 1.4 versicolor77 6.8 2.8 4.8 1.4 versicolor78 6.7 3.0 5.0 1.7 versicolor79 6.0 2.9 4.5 1.5 versicolor80 5.7 2.6 3.5 1.0 versicolor81 5.5 2.4 3.8 1.1 versicolor82 5.5 2.4 3.7 1.0 versicolor83 5.8 2.7 3.9 1.2 versicolor84 6.0 2.7 5.1 1.6 versicolor85 5.4 3.0 4.5 1.5 versicolor86 6.0 3.4 4.5 1.6 versicolor87 6.7 3.1 4.7 1.5 versicolor88 6.3 2.3 4.4 1.3 versicolor89 5.6 3.0 4.1 1.3 versicolor90 5.5 2.5 4.0 1.3 versicolor91 5.5 2.6 4.4 1.2 versicolor92 6.1 3.0 4.6 1.4 versicolor93 5.8 2.6 4.0 1.2 versicolor94 5.0 2.3 3.3 1.0 versicolor95 5.6 2.7 4.2 1.3 versicolor96 5.7 3.0 4.2 1.2 versicolor97 5.7 2.9 4.2 1.3 versicolor98 6.2 2.9 4.3 1.3 versicolor99 5.1 2.5 3.0 1.1 versicolor100 5.7 2.8 4.1 1.3 versicolor101 6.3 3.3 6.0 2.5 virginica102 5.8 2.7 5.1 1.9 virginica103 7.1 3.0 5.9 2.1 virginica104 6.3 2.9 5.6 1.8 virginica105 6.5 3.0 5.8 2.2 virginica106 7.6 3.0 6.6 2.1 virginica107 4.9 2.5 4.5 1.7 virginica108 7.3 2.9 6.3 1.8 virginica109 6.7 2.5 5.8 1.8 virginica110 7.2 3.6 6.1 2.5 virginica111 6.5 3.2 5.1 2.0 virginica112 6.4 2.7 5.3 1.9 virginica113 6.8 3.0 5.5 2.1 virginica114 5.7 2.5 5.0 2.0 virginica115 5.8 2.8 5.1 2.4 virginica116 6.4 3.2 5.3 2.3 virginica117 6.5 3.0 5.5 1.8 virginica118 7.7 3.8 6.7 2.2 virginica119 7.7 2.6 6.9 2.3 virginica120 6.0 2.2 5.0 1.5 virginica121 6.9 3.2 5.7 2.3 virginica122 5.6 2.8 4.9 2.0 virginica123 7.7 2.8 6.7 2.0 virginica124 6.3 2.7 4.9 1.8 virginica125 6.7 3.3 5.7 2.1 virginica126 7.2 3.2 6.0 1.8 virginica127 6.2 2.8 4.8 1.8 virginica128 6.1 3.0 4.9 1.8 virginica129 6.4 2.8 5.6 2.1 virginica130 7.2 3.0 5.8 1.6 virginica131 7.4 2.8 6.1 1.9 virginica132 7.9 3.8 6.4 2.0 virginica133 6.4 2.8 5.6 2.2 virginica134 6.3 2.8 5.1 1.5 virginica135 6.1 2.6 5.6 1.4 virginica136 7.7 3.0 6.1 2.3 virginica137 6.3 3.4 5.6 2.4 virginica138 6.4 3.1 5.5 1.8 virginica139 6.0 3.0 4.8 1.8 virginica140 6.9 3.1 5.4 2.1 virginica141 6.7 3.1 5.6 2.4 virginica142 6.9 3.1 5.1 2.3 virginica143 5.8 2.7 5.1 1.9 virginica144 6.8 3.2 5.9 2.3 virginica145 6.7 3.3 5.7 2.5 virginica146 6.7 3.0 5.2 2.3 virginica147 6.3 2.5 5.0 1.9 virginica148 6.5 3.0 5.2 2.0 virginica149 6.2 3.4 5.4 2.3 virginica150 5.9 3.0 5.1 1.8 virginicastr(first_list)
List of 3 $ : int [1:3] 1 2 3 $ : int [1:2, 1:3] 1 2 3 4 5 6 $ :'data.frame': 150 obs. of 5 variables: ..$ Sepal.Length: num [1:150] 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ... ..$ Sepal.Width : num [1:150] 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ... ..$ Petal.Length: num [1:150] 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ... ..$ Petal.Width : num [1:150] 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ... ..$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...str(first_list)
List of 3 $ : int [1:3] 1 2 3 $ : int [1:2, 1:3] 1 2 3 4 5 6 $ :'data.frame': 150 obs. of 5 variables: ..$ Sepal.Length: num [1:150] 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ... ..$ Sepal.Width : num [1:150] 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ... ..$ Petal.Length: num [1:150] 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ... ..$ Petal.Width : num [1:150] 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ... ..$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...first_list[[1]]
[1] 1 2 3first_list[[3]]$Species
[1] setosa setosa setosa setosa setosa setosa [7] setosa setosa setosa setosa setosa setosa [13] setosa setosa setosa setosa setosa setosa [19] setosa setosa setosa setosa setosa setosa [25] setosa setosa setosa setosa setosa setosa [31] setosa setosa setosa setosa setosa setosa [37] setosa setosa setosa setosa setosa setosa [43] setosa setosa setosa setosa setosa setosa [49] setosa setosa versicolor versicolor versicolor versicolor [55] versicolor versicolor versicolor versicolor versicolor versicolor [61] versicolor versicolor versicolor versicolor versicolor versicolor [67] versicolor versicolor versicolor versicolor versicolor versicolor [73] versicolor versicolor versicolor versicolor versicolor versicolor [79] versicolor versicolor versicolor versicolor versicolor versicolor [85] versicolor versicolor versicolor versicolor versicolor versicolor [91] versicolor versicolor versicolor versicolor versicolor versicolor [97] versicolor versicolor versicolor versicolor virginica virginica [103] virginica virginica virginica virginica virginica virginica [109] virginica virginica virginica virginica virginica virginica [115] virginica virginica virginica virginica virginica virginica [121] virginica virginica virginica virginica virginica virginica [127] virginica virginica virginica virginica virginica virginica [133] virginica virginica virginica virginica virginica virginica [139] virginica virginica virginica virginica virginica virginica [145] virginica virginica virginica virginica virginica virginica Levels: setosa versicolor virginicafirst_list_with_names <-list(a=1:3, b=matrix(1:6, nrow=2), c=iris)first_list_with_names
$a[1] 1 2 3$b [,1] [,2] [,3][1,] 1 3 5[2,] 2 4 6$c Sepal.Length Sepal.Width Petal.Length Petal.Width Species1 5.1 3.5 1.4 0.2 setosa2 4.9 3.0 1.4 0.2 setosa3 4.7 3.2 1.3 0.2 setosa4 4.6 3.1 1.5 0.2 setosa5 5.0 3.6 1.4 0.2 setosa6 5.4 3.9 1.7 0.4 setosa7 4.6 3.4 1.4 0.3 setosa8 5.0 3.4 1.5 0.2 setosa9 4.4 2.9 1.4 0.2 setosa10 4.9 3.1 1.5 0.1 setosa11 5.4 3.7 1.5 0.2 setosa12 4.8 3.4 1.6 0.2 setosa13 4.8 3.0 1.4 0.1 setosa14 4.3 3.0 1.1 0.1 setosa15 5.8 4.0 1.2 0.2 setosa16 5.7 4.4 1.5 0.4 setosa17 5.4 3.9 1.3 0.4 setosa18 5.1 3.5 1.4 0.3 setosa19 5.7 3.8 1.7 0.3 setosa20 5.1 3.8 1.5 0.3 setosa21 5.4 3.4 1.7 0.2 setosa22 5.1 3.7 1.5 0.4 setosa23 4.6 3.6 1.0 0.2 setosa24 5.1 3.3 1.7 0.5 setosa25 4.8 3.4 1.9 0.2 setosa26 5.0 3.0 1.6 0.2 setosa27 5.0 3.4 1.6 0.4 setosa28 5.2 3.5 1.5 0.2 setosa29 5.2 3.4 1.4 0.2 setosa30 4.7 3.2 1.6 0.2 setosa31 4.8 3.1 1.6 0.2 setosa32 5.4 3.4 1.5 0.4 setosa33 5.2 4.1 1.5 0.1 setosa34 5.5 4.2 1.4 0.2 setosa35 4.9 3.1 1.5 0.2 setosa36 5.0 3.2 1.2 0.2 setosa37 5.5 3.5 1.3 0.2 setosa38 4.9 3.6 1.4 0.1 setosa39 4.4 3.0 1.3 0.2 setosa40 5.1 3.4 1.5 0.2 setosa41 5.0 3.5 1.3 0.3 setosa42 4.5 2.3 1.3 0.3 setosa43 4.4 3.2 1.3 0.2 setosa44 5.0 3.5 1.6 0.6 setosa45 5.1 3.8 1.9 0.4 setosa46 4.8 3.0 1.4 0.3 setosa47 5.1 3.8 1.6 0.2 setosa48 4.6 3.2 1.4 0.2 setosa49 5.3 3.7 1.5 0.2 setosa50 5.0 3.3 1.4 0.2 setosa51 7.0 3.2 4.7 1.4 versicolor52 6.4 3.2 4.5 1.5 versicolor53 6.9 3.1 4.9 1.5 versicolor54 5.5 2.3 4.0 1.3 versicolor55 6.5 2.8 4.6 1.5 versicolor56 5.7 2.8 4.5 1.3 versicolor57 6.3 3.3 4.7 1.6 versicolor58 4.9 2.4 3.3 1.0 versicolor59 6.6 2.9 4.6 1.3 versicolor60 5.2 2.7 3.9 1.4 versicolor61 5.0 2.0 3.5 1.0 versicolor62 5.9 3.0 4.2 1.5 versicolor63 6.0 2.2 4.0 1.0 versicolor64 6.1 2.9 4.7 1.4 versicolor65 5.6 2.9 3.6 1.3 versicolor66 6.7 3.1 4.4 1.4 versicolor67 5.6 3.0 4.5 1.5 versicolor68 5.8 2.7 4.1 1.0 versicolor69 6.2 2.2 4.5 1.5 versicolor70 5.6 2.5 3.9 1.1 versicolor71 5.9 3.2 4.8 1.8 versicolor72 6.1 2.8 4.0 1.3 versicolor73 6.3 2.5 4.9 1.5 versicolor74 6.1 2.8 4.7 1.2 versicolor75 6.4 2.9 4.3 1.3 versicolor76 6.6 3.0 4.4 1.4 versicolor77 6.8 2.8 4.8 1.4 versicolor78 6.7 3.0 5.0 1.7 versicolor79 6.0 2.9 4.5 1.5 versicolor80 5.7 2.6 3.5 1.0 versicolor81 5.5 2.4 3.8 1.1 versicolor82 5.5 2.4 3.7 1.0 versicolor83 5.8 2.7 3.9 1.2 versicolor84 6.0 2.7 5.1 1.6 versicolor85 5.4 3.0 4.5 1.5 versicolor86 6.0 3.4 4.5 1.6 versicolor87 6.7 3.1 4.7 1.5 versicolor88 6.3 2.3 4.4 1.3 versicolor89 5.6 3.0 4.1 1.3 versicolor90 5.5 2.5 4.0 1.3 versicolor91 5.5 2.6 4.4 1.2 versicolor92 6.1 3.0 4.6 1.4 versicolor93 5.8 2.6 4.0 1.2 versicolor94 5.0 2.3 3.3 1.0 versicolor95 5.6 2.7 4.2 1.3 versicolor96 5.7 3.0 4.2 1.2 versicolor97 5.7 2.9 4.2 1.3 versicolor98 6.2 2.9 4.3 1.3 versicolor99 5.1 2.5 3.0 1.1 versicolor100 5.7 2.8 4.1 1.3 versicolor101 6.3 3.3 6.0 2.5 virginica102 5.8 2.7 5.1 1.9 virginica103 7.1 3.0 5.9 2.1 virginica104 6.3 2.9 5.6 1.8 virginica105 6.5 3.0 5.8 2.2 virginica106 7.6 3.0 6.6 2.1 virginica107 4.9 2.5 4.5 1.7 virginica108 7.3 2.9 6.3 1.8 virginica109 6.7 2.5 5.8 1.8 virginica110 7.2 3.6 6.1 2.5 virginica111 6.5 3.2 5.1 2.0 virginica112 6.4 2.7 5.3 1.9 virginica113 6.8 3.0 5.5 2.1 virginica114 5.7 2.5 5.0 2.0 virginica115 5.8 2.8 5.1 2.4 virginica116 6.4 3.2 5.3 2.3 virginica117 6.5 3.0 5.5 1.8 virginica118 7.7 3.8 6.7 2.2 virginica119 7.7 2.6 6.9 2.3 virginica120 6.0 2.2 5.0 1.5 virginica121 6.9 3.2 5.7 2.3 virginica122 5.6 2.8 4.9 2.0 virginica123 7.7 2.8 6.7 2.0 virginica124 6.3 2.7 4.9 1.8 virginica125 6.7 3.3 5.7 2.1 virginica126 7.2 3.2 6.0 1.8 virginica127 6.2 2.8 4.8 1.8 virginica128 6.1 3.0 4.9 1.8 virginica129 6.4 2.8 5.6 2.1 virginica130 7.2 3.0 5.8 1.6 virginica131 7.4 2.8 6.1 1.9 virginica132 7.9 3.8 6.4 2.0 virginica133 6.4 2.8 5.6 2.2 virginica134 6.3 2.8 5.1 1.5 virginica135 6.1 2.6 5.6 1.4 virginica136 7.7 3.0 6.1 2.3 virginica137 6.3 3.4 5.6 2.4 virginica138 6.4 3.1 5.5 1.8 virginica139 6.0 3.0 4.8 1.8 virginica140 6.9 3.1 5.4 2.1 virginica141 6.7 3.1 5.6 2.4 virginica142 6.9 3.1 5.1 2.3 virginica143 5.8 2.7 5.1 1.9 virginica144 6.8 3.2 5.9 2.3 virginica145 6.7 3.3 5.7 2.5 virginica146 6.7 3.0 5.2 2.3 virginica147 6.3 2.5 5.0 1.9 virginica148 6.5 3.0 5.2 2.0 virginica149 6.2 3.4 5.4 2.3 virginica150 5.9 3.0 5.1 1.8 virginicastr(first_list_with_names)
List of 3 $ a: int [1:3] 1 2 3 $ b: int [1:2, 1:3] 1 2 3 4 5 6 $ c:'data.frame': 150 obs. of 5 variables: ..$ Sepal.Length: num [1:150] 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ... ..$ Sepal.Width : num [1:150] 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ... ..$ Petal.Length: num [1:150] 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ... ..$ Petal.Width : num [1:150] 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ... ..$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...first_list_with_names$a
[1] 1 2 3first_list_with_names$c$Species
[1] setosa setosa setosa setosa setosa setosa [7] setosa setosa setosa setosa setosa setosa [13] setosa setosa setosa setosa setosa setosa [19] setosa setosa setosa setosa setosa setosa [25] setosa setosa setosa setosa setosa setosa [31] setosa setosa setosa setosa setosa setosa [37] setosa setosa setosa setosa setosa setosa [43] setosa setosa setosa setosa setosa setosa [49] setosa setosa versicolor versicolor versicolor versicolor [55] versicolor versicolor versicolor versicolor versicolor versicolor [61] versicolor versicolor versicolor versicolor versicolor versicolor [67] versicolor versicolor versicolor versicolor versicolor versicolor [73] versicolor versicolor versicolor versicolor versicolor versicolor [79] versicolor versicolor versicolor versicolor versicolor versicolor [85] versicolor versicolor versicolor versicolor versicolor versicolor [91] versicolor versicolor versicolor versicolor versicolor versicolor [97] versicolor versicolor versicolor versicolor virginica virginica [103] virginica virginica virginica virginica virginica virginica [109] virginica virginica virginica virginica virginica virginica [115] virginica virginica virginica virginica virginica virginica [121] virginica virginica virginica virginica virginica virginica [127] virginica virginica virginica virginica virginica virginica [133] virginica virginica virginica virginica virginica virginica [139] virginica virginica virginica virginica virginica virginica [145] virginica virginica virginica virginica virginica virginica Levels: setosa versicolor virginicac("Jan","Feb","Mar"); matrix(c(3,9,5,1,-2,8), nrow = 2); list("green",12.3)
[1] "Jan" "Feb" "Mar" [,1] [,2] [,3][1,] 3 5 -2[2,] 9 1 8[[1]][1] "green"[[2]][1] 12.3Create a list containing the above vector, matrix and the list.
Name the elements as first, second and third.
Vector
Matrix
Array
Data Frame
List

Keyboard shortcuts
| ↑, ←, Pg Up, k | Go to previous slide |
| ↓, →, Pg Dn, Space, j | Go to next slide |
| Home | Go to first slide |
| End | Go to last slide |
| Number + Return | Go to specific slide |
| b / m / f | Toggle blackout / mirrored / fullscreen mode |
| c | Clone slideshow |
| p | Toggle presenter mode |
| t | Restart the presentation timer |
| ?, h | Toggle this help |
| Esc | Back to slideshow |