Bootstrap is a method of inference.
Bradley Efron first introduced this approach in 1979.
Estimate the standard error of any statistic and to obtain a confidence interval (CI) for it.
This is useful when CI doesn't have a closed form, or it has a very complicated one.
Hypothesis testing
Bootstrap sampling in regression, etc.
Nonparametric (resampling)
Semiparametric (adding noise)
Parametric (simulation)
The bootstrap sample is the same size as the original sample data.
As a result, some observations will be represented multiple times in the bootstrap sample while others will not be selected at all.
Bootstrapping does not take new observations from the population.
It treats the original sample as a proxy for the real population and then draws random samples from it.
Consequently, the central assumption for bootstrapping is that the original sample accurately represents the actual population.
Take a sample from population. This is called the original sample. Suppose the sample size is n.
Draw a sample from the original sample data with replacement with size n and repeat this step N times.
Compute the statistic of θ for each Bootstrap Sample, and there will be totally N estimates of θ.
Construct a sampling distribution with these N Bootstrap statistics and use it to make further statistical inference.
how they estimate sampling distributions
"The traditional approach also uses theory to tell what the sampling distribution should look like, but the results fall apart if the assumptions of the theory are not met. The bootstrapping method, on the other hand, takes the original sample data and then resamples it to create many bootstrap samples."
source: towards data science.
Height of randomly selected individuals
height <- c(5.2, 6.1, 5.5, 5.4, 5.3)height
[1] 5.2 6.1 5.5 5.4 5.3
Construct 1000 bootstrap samples.
Calculate the sample mean for each of the resamples.
Make a histogram of the means of the 1000 bootstrap samples. This is the bootstrap distribution.
Calculate the bootstrap standard error.
Help:
¯X∗=1NN∑i=1¯xbootstrapi
se(¯X∗)= ⎷1N−1N∑i=1(¯xbootstrapi−¯X∗)2
The bootstrap standard error, of a statistic is the standard deviation of the bootstrap distribution of that statistic.
[¯x−tα/2,n−1se(¯x),¯x−tα/2,n−1se(¯x)]
boot
package can generate bootstrap samples.
Step 1: To use the boot
function for drawing samples, you need a function to compute the statistic of interest.
samplemean <- function(data, indices) { return(mean(data[indices]))}
It should have at least two arguments:
i) data
: the original data
ii) a vector containing indices
: frequencies or weights which define the bootstrap sample.
data[indices]
Creates the bootstrap sample (i.e., subset the provided data by the “indices” parameter). “indices” is automatically provided by the “boot” function; this is the sampling with replacement portion of bootstrapping.
Step 2: Conduct the bootstrapping
library(boot)result <- boot(data = height, statistic = samplemean, R = 1000)result
ORDINARY NONPARAMETRIC BOOTSTRAPCall:boot(data = height, statistic = samplemean, R = 1000)Bootstrap Statistics : original bias std. errort1* 5.5 0.00528 0.1402647
Bootstrap sample means
result$t
[,1] [1,] 5.38 [2,] 5.52 [3,] 5.46 [4,] 5.50 [5,] 5.64 [6,] 5.60 [7,] 5.40 [8,] 5.66 [9,] 5.54 [10,] 5.50 [11,] 5.50 [12,] 5.70 [13,] 5.32 [14,] 5.36 [15,] 5.52 [16,] 5.60 [17,] 5.46 [18,] 5.48 [19,] 5.40 [20,] 5.54 [21,] 5.50 [22,] 5.48 [23,] 5.56 [24,] 5.38 [25,] 5.40 [26,] 5.32 [27,] 5.46 [28,] 5.60 [29,] 5.64 [30,] 5.54 [31,] 5.72 [32,] 5.32 [33,] 5.48 [34,] 5.64 [35,] 5.52 [36,] 5.32 [37,] 5.32 [38,] 5.34 [39,] 5.60 [40,] 5.36 [41,] 5.52 [42,] 5.68 [43,] 5.68 [44,] 5.32 [45,] 5.50 [46,] 5.46 [47,] 5.50 [48,] 5.48 [49,] 5.38 [50,] 5.64 [51,] 5.36 [52,] 5.54 [53,] 5.64 [54,] 5.38 [55,] 5.70 [56,] 5.66 [57,] 5.50 [58,] 5.54 [59,] 5.62 [60,] 5.50 [61,] 5.50 [62,] 5.54 [63,] 5.30 [64,] 5.62 [65,] 5.64 [66,] 5.36 [67,] 5.34 [68,] 5.36 [69,] 5.26 [70,] 5.70 [71,] 5.54 [72,] 5.54 [73,] 5.68 [74,] 5.38 [75,] 5.62 [76,] 5.78 [77,] 5.52 [78,] 5.52 [79,] 5.24 [80,] 5.54 [81,] 5.44 [82,] 5.68 [83,] 5.82 [84,] 5.78 [85,] 5.58 [86,] 5.86 [87,] 5.54 [88,] 5.46 [89,] 5.60 [90,] 5.36 [91,] 5.42 [92,] 5.58 [93,] 5.40 [94,] 5.26 [95,] 5.48 [96,] 5.58 [97,] 5.44 [98,] 5.48 [99,] 5.50 [100,] 5.50 [101,] 5.46 [102,] 5.28 [103,] 5.26 [104,] 5.28 [105,] 5.48 [106,] 5.36 [107,] 5.66 [108,] 5.62 [109,] 5.80 [110,] 5.72 [111,] 5.42 [112,] 5.36 [113,] 5.80 [114,] 5.68 [115,] 5.44 [116,] 5.56 [117,] 5.64 [118,] 5.28 [119,] 5.46 [120,] 5.28 [121,] 5.46 [122,] 5.64 [123,] 5.62 [124,] 5.50 [125,] 5.32 [126,] 5.52 [127,] 5.26 [128,] 5.66 [129,] 5.40 [130,] 5.78 [131,] 5.50 [132,] 5.30 [133,] 5.66 [134,] 5.50 [135,] 5.60 [136,] 5.26 [137,] 5.66 [138,] 5.52 [139,] 5.56 [140,] 5.48 [141,] 5.30 [142,] 5.32 [143,] 5.34 [144,] 5.56 [145,] 5.56 [146,] 5.86 [147,] 5.38 [148,] 5.40 [149,] 5.72 [150,] 5.48 [151,] 5.54 [152,] 5.58 [153,] 5.62 [154,] 5.50 [155,] 5.50 [156,] 5.52 [157,] 5.52 [158,] 5.82 [159,] 5.68 [160,] 5.50 [161,] 5.46 [162,] 5.48 [163,] 5.26 [164,] 5.56 [165,] 5.54 [166,] 5.42 [167,] 5.52 [168,] 5.44 [169,] 5.48 [170,] 5.64 [171,] 5.64 [172,] 5.58 [173,] 5.36 [174,] 5.48 [175,] 5.34 [176,] 5.38 [177,] 5.44 [178,] 5.32 [179,] 5.48 [180,] 5.58 [181,] 5.44 [182,] 5.38 [183,] 5.74 [184,] 5.32 [185,] 5.48 [186,] 5.34 [187,] 5.72 [188,] 5.56 [189,] 5.52 [190,] 5.50 [191,] 5.40 [192,] 5.60 [193,] 5.28 [194,] 5.36 [195,] 5.68 [196,] 5.64 [197,] 5.52 [198,] 5.54 [199,] 5.34 [200,] 5.28 [201,] 5.76 [202,] 5.48 [203,] 5.60 [204,] 5.52 [205,] 5.52 [206,] 5.54 [207,] 5.52 [208,] 5.56 [209,] 5.54 [210,] 5.40 [211,] 5.46 [212,] 5.84 [213,] 5.64 [214,] 5.30 [215,] 5.48 [216,] 5.54 [217,] 5.50 [218,] 5.34 [219,] 5.36 [220,] 5.38 [221,] 5.44 [222,] 5.44 [223,] 5.52 [224,] 5.26 [225,] 5.82 [226,] 5.38 [227,] 5.80 [228,] 5.32 [229,] 5.22 [230,] 5.32 [231,] 5.52 [232,] 5.30 [233,] 5.54 [234,] 5.80 [235,] 5.34 [236,] 5.62 [237,] 5.66 [238,] 5.34 [239,] 5.62 [240,] 5.66 [241,] 5.32 [242,] 5.62 [243,] 5.62 [244,] 5.52 [245,] 5.36 [246,] 5.54 [247,] 5.50 [248,] 5.50 [249,] 5.66 [250,] 5.52 [251,] 5.54 [252,] 5.44 [253,] 5.50 [254,] 5.50 [255,] 5.70 [256,] 5.72 [257,] 5.64 [258,] 5.78 [259,] 5.54 [260,] 5.42 [261,] 5.38 [262,] 5.38 [263,] 5.48 [264,] 5.50 [265,] 5.28 [266,] 5.32 [267,] 5.48 [268,] 5.48 [269,] 5.66 [270,] 5.54 [271,] 5.70 [272,] 5.80 [273,] 5.78 [274,] 5.50 [275,] 5.86 [276,] 5.42 [277,] 5.66 [278,] 5.38 [279,] 5.48 [280,] 5.66 [281,] 5.44 [282,] 5.68 [283,] 5.64 [284,] 5.66 [285,] 5.50 [286,] 5.56 [287,] 5.60 [288,] 5.58 [289,] 5.48 [290,] 5.36 [291,] 5.30 [292,] 5.54 [293,] 5.52 [294,] 5.34 [295,] 5.52 [296,] 5.54 [297,] 5.66 [298,] 5.42 [299,] 5.38 [300,] 5.44 [301,] 5.50 [302,] 5.36 [303,] 5.56 [304,] 5.52 [305,] 5.34 [306,] 5.34 [307,] 5.74 [308,] 5.64 [309,] 5.76 [310,] 5.40 [311,] 5.50 [312,] 5.40 [313,] 5.42 [314,] 5.46 [315,] 5.70 [316,] 5.52 [317,] 5.64 [318,] 5.68 [319,] 5.32 [320,] 5.40 [321,] 5.42 [322,] 5.50 [323,] 5.44 [324,] 5.50 [325,] 5.46 [326,] 5.68 [327,] 5.32 [328,] 5.30 [329,] 5.32 [330,] 5.50 [331,] 5.66 [332,] 5.66 [333,] 5.32 [334,] 5.58 [335,] 5.50 [336,] 5.32 [337,] 5.68 [338,] 5.48 [339,] 5.50 [340,] 5.50 [341,] 5.48 [342,] 5.36 [343,] 5.60 [344,] 5.34 [345,] 5.48 [346,] 5.38 [347,] 5.42 [348,] 5.80 [349,] 5.48 [350,] 5.48 [351,] 5.26 [352,] 5.54 [353,] 5.44 [354,] 5.50 [355,] 5.80 [356,] 5.26 [357,] 5.50 [358,] 5.64 [359,] 5.30 [360,] 5.48 [361,] 5.34 [362,] 5.62 [363,] 5.50 [364,] 5.82 [365,] 5.68 [366,] 5.52 [367,] 5.44 [368,] 5.78 [369,] 5.50 [370,] 5.52 [371,] 5.36 [372,] 5.68 [373,] 5.50 [374,] 5.36 [375,] 5.42 [376,] 5.38 [377,] 5.68 [378,] 5.46 [379,] 5.40 [380,] 5.80 [381,] 5.66 [382,] 5.46 [383,] 5.54 [384,] 5.56 [385,] 5.32 [386,] 5.60 [387,] 5.48 [388,] 5.40 [389,] 5.54 [390,] 5.28 [391,] 5.50 [392,] 5.34 [393,] 5.54 [394,] 5.68 [395,] 5.32 [396,] 5.36 [397,] 5.50 [398,] 5.44 [399,] 5.54 [400,] 5.42 [401,] 5.66 [402,] 5.56 [403,] 5.32 [404,] 5.82 [405,] 5.56 [406,] 5.44 [407,] 5.72 [408,] 5.62 [409,] 5.72 [410,] 5.66 [411,] 5.60 [412,] 5.52 [413,] 5.48 [414,] 5.58 [415,] 5.30 [416,] 5.46 [417,] 5.26 [418,] 5.38 [419,] 5.34 [420,] 5.56 [421,] 5.44 [422,] 5.46 [423,] 5.66 [424,] 5.62 [425,] 5.52 [426,] 5.32 [427,] 5.70 [428,] 5.66 [429,] 5.50 [430,] 5.62 [431,] 5.36 [432,] 5.64 [433,] 5.66 [434,] 5.40 [435,] 5.26 [436,] 5.58 [437,] 5.48 [438,] 5.70 [439,] 5.48 [440,] 5.74 [441,] 5.52 [442,] 5.42 [443,] 5.52 [444,] 5.64 [445,] 5.78 [446,] 5.30 [447,] 5.52 [448,] 5.38 [449,] 5.46 [450,] 5.36 [451,] 5.30 [452,] 5.34 [453,] 5.62 [454,] 5.50 [455,] 5.52 [456,] 5.66 [457,] 5.60 [458,] 5.48 [459,] 5.50 [460,] 5.66 [461,] 5.48 [462,] 5.40 [463,] 5.32 [464,] 5.52 [465,] 5.34 [466,] 5.68 [467,] 5.72 [468,] 5.60 [469,] 5.40 [470,] 5.58 [471,] 5.50 [472,] 5.46 [473,] 5.62 [474,] 5.44 [475,] 5.52 [476,] 5.54 [477,] 5.40 [478,] 5.74 [479,] 5.34 [480,] 5.46 [481,] 5.52 [482,] 5.30 [483,] 5.50 [484,] 5.60 [485,] 5.76 [486,] 5.52 [487,] 5.50 [488,] 5.70 [489,] 5.62 [490,] 5.40 [491,] 5.46 [492,] 5.48 [493,] 5.34 [494,] 5.54 [495,] 5.40 [496,] 5.38 [497,] 5.52 [498,] 5.54 [499,] 5.50 [500,] 5.42 [501,] 5.54 [502,] 5.70 [503,] 5.36 [504,] 5.34 [505,] 5.36 [506,] 5.46 [507,] 5.38 [508,] 5.34 [509,] 5.40 [510,] 5.44 [511,] 5.48 [512,] 5.74 [513,] 5.46 [514,] 5.40 [515,] 5.26 [516,] 5.44 [517,] 5.50 [518,] 5.52 [519,] 5.78 [520,] 5.50 [521,] 5.30 [522,] 5.30 [523,] 5.34 [524,] 5.42 [525,] 5.28 [526,] 5.56 [527,] 5.50 [528,] 5.66 [529,] 5.66 [530,] 5.62 [531,] 5.30 [532,] 5.62 [533,] 5.50 [534,] 5.82 [535,] 5.58 [536,] 5.66 [537,] 5.30 [538,] 5.84 [539,] 5.56 [540,] 5.40 [541,] 5.30 [542,] 5.84 [543,] 5.42 [544,] 5.24 [545,] 5.60 [546,] 5.58 [547,] 5.60 [548,] 5.56 [549,] 5.82 [550,] 5.34 [551,] 5.70 [552,] 5.64 [553,] 5.48 [554,] 5.36 [555,] 5.32 [556,] 5.48 [557,] 5.48 [558,] 5.48 [559,] 5.64 [560,] 5.48 [561,] 5.38 [562,] 5.62 [563,] 5.38 [564,] 5.52 [565,] 5.44 [566,] 5.78 [567,] 5.58 [568,] 5.66 [569,] 5.40 [570,] 5.46 [571,] 5.30 [572,] 5.48 [573,] 5.48 [574,] 5.64 [575,] 5.34 [576,] 5.48 [577,] 5.72 [578,] 5.40 [579,] 5.58 [580,] 5.48 [581,] 5.44 [582,] 5.68 [583,] 5.66 [584,] 5.64 [585,] 5.66 [586,] 5.34 [587,] 5.50 [588,] 5.38 [589,] 5.50 [590,] 5.96 [591,] 5.66 [592,] 5.54 [593,] 5.48 [594,] 5.36 [595,] 5.64 [596,] 5.42 [597,] 5.42 [598,] 5.54 [599,] 5.34 [600,] 5.48 [601,] 5.68 [602,] 5.32 [603,] 5.30 [604,] 5.42 [605,] 5.48 [606,] 5.52 [607,] 5.58 [608,] 5.36 [609,] 5.38 [610,] 5.66 [611,] 5.64 [612,] 5.46 [613,] 5.34 [614,] 5.46 [615,] 5.48 [616,] 5.56 [617,] 5.52 [618,] 5.40 [619,] 5.32 [620,] 5.38 [621,] 5.26 [622,] 5.44 [623,] 5.50 [624,] 5.76 [625,] 5.66 [626,] 5.30 [627,] 5.30 [628,] 5.38 [629,] 5.56 [630,] 5.48 [631,] 5.40 [632,] 5.30 [633,] 5.28 [634,] 5.50 [635,] 5.48 [636,] 5.40 [637,] 5.54 [638,] 5.50 [639,] 5.54 [640,] 5.68 [641,] 5.30 [642,] 5.34 [643,] 5.20 [644,] 5.80 [645,] 5.34 [646,] 5.50 [647,] 5.34 [648,] 5.50 [649,] 5.48 [650,] 5.42 [651,] 5.52 [652,] 5.62 [653,] 5.50 [654,] 5.62 [655,] 5.50 [656,] 5.74 [657,] 5.62 [658,] 5.54 [659,] 5.34 [660,] 5.32 [661,] 5.42 [662,] 5.32 [663,] 5.66 [664,] 5.60 [665,] 5.52 [666,] 5.48 [667,] 5.36 [668,] 5.64 [669,] 5.52 [670,] 5.66 [671,] 5.62 [672,] 5.42 [673,] 5.34 [674,] 5.60 [675,] 5.28 [676,] 5.46 [677,] 5.44 [678,] 5.66 [679,] 5.70 [680,] 5.54 [681,] 5.64 [682,] 5.54 [683,] 5.52 [684,] 5.78 [685,] 5.38 [686,] 5.80 [687,] 5.42 [688,] 5.38 [689,] 5.48 [690,] 5.32 [691,] 5.56 [692,] 5.28 [693,] 5.28 [694,] 5.52 [695,] 5.52 [696,] 5.46 [697,] 5.50 [698,] 5.54 [699,] 5.30 [700,] 5.50 [701,] 5.62 [702,] 5.60 [703,] 5.44 [704,] 5.44 [705,] 5.66 [706,] 5.36 [707,] 5.46 [708,] 5.36 [709,] 5.46 [710,] 5.36 [711,] 5.52 [712,] 5.52 [713,] 5.44 [714,] 5.50 [715,] 5.64 [716,] 5.40 [717,] 5.60 [718,] 5.50 [719,] 5.50 [720,] 5.32 [721,] 5.40 [722,] 5.54 [723,] 5.42 [724,] 5.30 [725,] 5.36 [726,] 5.30 [727,] 5.40 [728,] 5.48 [729,] 5.68 [730,] 5.40 [731,] 5.52 [732,] 5.50 [733,] 5.46 [734,] 5.58 [735,] 5.44 [736,] 5.52 [737,] 5.64 [738,] 5.46 [739,] 5.50 [740,] 5.62 [741,] 5.54 [742,] 5.68 [743,] 5.64 [744,] 5.52 [745,] 5.50 [746,] 5.64 [747,] 5.34 [748,] 5.80 [749,] 5.54 [750,] 5.64 [751,] 5.48 [752,] 5.52 [753,] 5.50 [754,] 5.72 [755,] 5.64 [756,] 5.52 [757,] 5.62 [758,] 5.36 [759,] 5.40 [760,] 5.50 [761,] 5.72 [762,] 5.54 [763,] 5.48 [764,] 5.64 [765,] 5.68 [766,] 5.72 [767,] 5.36 [768,] 5.46 [769,] 5.56 [770,] 5.64 [771,] 5.48 [772,] 5.60 [773,] 5.66 [774,] 5.36 [775,] 5.36 [776,] 5.54 [777,] 5.34 [778,] 5.78 [779,] 5.48 [780,] 5.64 [781,] 5.40 [782,] 5.46 [783,] 5.40 [784,] 5.44 [785,] 5.78 [786,] 5.30 [787,] 5.64 [788,] 5.24 [789,] 5.70 [790,] 5.44 [791,] 5.38 [792,] 5.38 [793,] 5.72 [794,] 5.50 [795,] 5.34 [796,] 5.64 [797,] 5.74 [798,] 5.54 [799,] 5.46 [800,] 5.48 [801,] 5.42 [802,] 5.48 [803,] 5.50 [804,] 5.40 [805,] 5.64 [806,] 5.60 [807,] 5.52 [808,] 5.42 [809,] 5.50 [810,] 5.70 [811,] 5.52 [812,] 5.50 [813,] 5.38 [814,] 5.36 [815,] 5.38 [816,] 5.62 [817,] 5.24 [818,] 5.56 [819,] 5.40 [820,] 5.44 [821,] 5.50 [822,] 5.62 [823,] 5.36 [824,] 5.56 [825,] 5.48 [826,] 5.40 [827,] 5.50 [828,] 5.48 [829,] 5.50 [830,] 5.32 [831,] 5.54 [832,] 5.58 [833,] 5.66 [834,] 5.54 [835,] 5.50 [836,] 5.82 [837,] 5.72 [838,] 5.36 [839,] 5.54 [840,] 5.62 [841,] 5.28 [842,] 5.48 [843,] 5.50 [844,] 5.50 [845,] 5.60 [846,] 5.38 [847,] 5.36 [848,] 5.34 [849,] 5.36 [850,] 5.38 [851,] 5.66 [852,] 5.50 [853,] 5.34 [854,] 5.38 [855,] 5.60 [856,] 5.40 [857,] 5.24 [858,] 5.66 [859,] 5.74 [860,] 5.66 [861,] 5.48 [862,] 5.50 [863,] 5.46 [864,] 5.70 [865,] 5.66 [866,] 5.46 [867,] 5.42 [868,] 5.30 [869,] 5.50 [870,] 5.48 [871,] 5.36 [872,] 5.38 [873,] 5.48 [874,] 5.58 [875,] 5.42 [876,] 5.50 [877,] 5.54 [878,] 5.50 [879,] 5.54 [880,] 5.22 [881,] 5.28 [882,] 5.26 [883,] 5.32 [884,] 5.50 [885,] 5.48 [886,] 5.64 [887,] 5.40 [888,] 5.56 [889,] 5.36 [890,] 5.64 [891,] 5.64 [892,] 5.38 [893,] 5.32 [894,] 5.40 [895,] 5.36 [896,] 5.48 [897,] 5.34 [898,] 5.68 [899,] 5.50 [900,] 5.82 [901,] 5.74 [902,] 5.56 [903,] 5.52 [904,] 5.46 [905,] 5.54 [906,] 5.94 [907,] 5.78 [908,] 5.38 [909,] 5.78 [910,] 5.38 [911,] 5.30 [912,] 5.36 [913,] 5.62 [914,] 5.50 [915,] 5.54 [916,] 5.32 [917,] 5.26 [918,] 5.38 [919,] 5.36 [920,] 5.84 [921,] 5.42 [922,] 5.52 [923,] 5.50 [924,] 5.68 [925,] 5.30 [926,] 5.46 [927,] 5.48 [928,] 5.64 [929,] 5.46 [930,] 5.82 [931,] 5.30 [932,] 5.72 [933,] 5.82 [934,] 5.46 [935,] 5.32 [936,] 5.64 [937,] 5.44 [938,] 5.64 [939,] 5.40 [940,] 5.48 [941,] 5.48 [942,] 5.54 [943,] 5.54 [944,] 5.30 [945,] 5.66 [946,] 5.50 [947,] 5.48 [948,] 5.44 [949,] 5.46 [950,] 5.46 [951,] 5.68 [952,] 5.92 [953,] 5.46 [954,] 5.74 [955,] 5.40 [956,] 5.64 [957,] 5.42 [958,] 5.72 [959,] 5.56 [960,] 5.50 [961,] 5.34 [962,] 5.36 [963,] 5.70 [964,] 5.44 [965,] 5.52 [966,] 5.64 [967,] 5.42 [968,] 5.48 [969,] 5.72 [970,] 5.58 [971,] 5.30 [972,] 5.44 [973,] 5.36 [974,] 5.54 [975,] 5.66 [976,] 5.66 [977,] 5.32 [978,] 5.56 [979,] 5.62 [980,] 5.26 [981,] 5.48 [982,] 5.54 [983,] 5.38 [984,] 5.60 [985,] 5.68 [986,] 5.64 [987,] 5.48 [988,] 5.70 [989,] 5.92 [990,] 5.42 [991,] 5.34 [992,] 5.48 [993,] 5.72 [994,] 5.54 [995,] 5.34 [996,] 5.46 [997,] 5.84 [998,] 5.24 [999,] 5.46[1000,] 5.80
Original sample mean
mean(height)
[1] 5.5
df <- data.frame(mean=result$t)library(ggplot2)ggplot(df, aes(x=mean)) + geom_histogram(col="white")
result
ORDINARY NONPARAMETRIC BOOTSTRAPCall:boot(data = height, statistic = samplemean, R = 1000)Bootstrap Statistics : original bias std. errort1* 5.5 0.00528 0.1402647
mean(height)
[1] 5.5
mean(result$t) - mean(height)
[1] 0.00528
sd(result$t)
[1] 0.1402647
Method 1:
The 95% bootstrap confidence interval is
c(sort(result$t)[25],sort(result$t)[975])
[1] 5.26 5.80
Method 2:
boot.ci(result, type="all")
Warning in boot.ci(result, type = "all"): bootstrap variances needed forstudentized intervals
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONSBased on 1000 bootstrap replicatesCALL : boot.ci(boot.out = result, type = "all")Intervals : Level Normal Basic 95% ( 5.220, 5.770 ) ( 5.200, 5.739 ) Level Percentile BCa 95% ( 5.261, 5.800 ) ( 5.280, 5.820 ) Calculations and Intervals on Original Scale
Normal
Basic
Percentile
BCa (“Bias Corrected and Accelerated)
Reading here: https://www.r-bloggers.com/2019/09/understanding-bootstrap-confidence-interval-output-from-the-r-boot-package/
H0:μ=5
H1:μ≠5
boot.ci(result, type="all")
Warning in boot.ci(result, type = "all"): bootstrap variances needed forstudentized intervals
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONSBased on 1000 bootstrap replicatesCALL : boot.ci(boot.out = result, type = "all")Intervals : Level Normal Basic 95% ( 5.220, 5.770 ) ( 5.200, 5.739 ) Level Percentile BCa 95% ( 5.261, 5.800 ) ( 5.280, 5.820 ) Calculations and Intervals on Original Scale
5 is outside the interval. Hence, H0 would be rejected under 0.05 level of significance. We can conclude that population mean is significantly different from 5.
Compute bootstrap confidence interval for median.
data: heights
samplemedian <- function(data, indices) { return(median(data[indices]))}resultmedian <- boot(data = height, statistic = samplemedian, R = 1000)resultmedian
ORDINARY NONPARAMETRIC BOOTSTRAPCall:boot(data = height, statistic = samplemedian, R = 1000)Bootstrap Statistics : original bias std. errort1* 5.4 0.0348 0.1904343
boot.ci(resultmedian, type="all")
Warning in boot.ci(resultmedian, type = "all"): bootstrap variances needed forstudentized intervals
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONSBased on 1000 bootstrap replicatesCALL : boot.ci(boot.out = resultmedian, type = "all")Intervals : Level Normal Basic 95% ( 4.992, 5.738 ) ( 4.700, 5.600 ) Level Percentile BCa 95% ( 5.2, 6.1 ) ( 5.2, 5.5 ) Calculations and Intervals on Original ScaleSome BCa intervals may be unstable
Unlike bootstrap, jackknife is an iterative process. A parameter is calculated on the whole dataset and it is repeatedly recalculated by removing an element one after another.
The main application of jackknife is to reduce bias and evaluate variance for an estimator.
Construct
CIs for median Sepal.Length
,
CIs for median Sepal.Width
and
CIs for Spearman's rank correlation coefficient between Sepal.Length
and Sepal.Width
using bootstrap sampling.
Data: iris
Slides available at: https://thiyanga.netlify.app/courses/rmsc2020/contentr/
All rights reserved by Thiyanga S. Talagala
Bootstrap is a method of inference.
Bradley Efron first introduced this approach in 1979.
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
s | Start & Stop the presentation timer |
t | Reset the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |