+ - 0:00:00
Notes for current slide
Notes for next slide

STA 517 3.0 Programming and Statistical Computing with R

An Introduction to the Bootstrap Method

Dr Thiyanga Talagala

1 / 23

What is a bootstrap?

  • Bootstrap is a method of inference.

  • Bradley Efron first introduced this approach in 1979.

    • Link to his original paper is here.

  • Bootstrapping is a computer-intensive procedure.
2 / 23

Applications

  • Estimate the standard error of any statistic and to obtain a confidence interval (CI) for it.

  • This is useful when CI doesn't have a closed form, or it has a very complicated one.

  • Hypothesis testing

  • Bootstrap sampling in regression, etc.

Three forms of bootstrapping

  • Nonparametric (resampling)

  • Semiparametric (adding noise)

  • Parametric (simulation)

3 / 23

Bootstrapping Resamples

  • The bootstrap sample is the same size as the original sample data.

  • As a result, some observations will be represented multiple times in the bootstrap sample while others will not be selected at all.

Example of Bootstrap Samples

  • Bootstrapping does not take new observations from the population.

  • It treats the original sample as a proxy for the real population and then draws random samples from it.

  • Consequently, the central assumption for bootstrapping is that the original sample accurately represents the actual population.

4 / 23

Steps

  1. Take a sample from population. This is called the original sample. Suppose the sample size is n.

  2. Draw a sample from the original sample data with replacement with size n and repeat this step N times.

  3. Compute the statistic of θ for each Bootstrap Sample, and there will be totally N estimates of θ.

  4. Construct a sampling distribution with these N Bootstrap statistics and use it to make further statistical inference.

5 / 23

6 / 23

Differences between Bootstrapping and Traditional Inference Methods

  • how they estimate sampling distributions

  • "The traditional approach also uses theory to tell what the sampling distribution should look like, but the results fall apart if the assumptions of the theory are not met. The bootstrapping method, on the other hand, takes the original sample data and then resamples it to create many bootstrap samples."

source: towards data science.

7 / 23

Example 1

Height of randomly selected individuals

height <- c(5.2, 6.1, 5.5, 5.4, 5.3)
height
[1] 5.2 6.1 5.5 5.4 5.3
  1. Construct 1000 bootstrap samples.

  2. Calculate the sample mean for each of the resamples.

  3. Make a histogram of the means of the 1000 bootstrap samples. This is the bootstrap distribution.

  4. Calculate the bootstrap standard error.

8 / 23

Example 1 (cont.)

Help:

X¯=1Ni=1Nx¯ibootstrap

se(X¯)=1N1i=1N(x¯ibootstrapX¯)2

The bootstrap standard error, of a statistic is the standard deviation of the bootstrap distribution of that statistic.

9 / 23

Classical confidence interval

[x¯tα/2,n1se(x¯),x¯tα/2,n1se(x¯)]

Confidence intervals via bootstrap

  • boot package can generate bootstrap samples.

  • Step 1: To use the boot function for drawing samples, you need a function to compute the statistic of interest.

samplemean <- function(data, indices) {
return(mean(data[indices]))
}

It should have at least two arguments:

i) data: the original data

ii) a vector containing indices: frequencies or weights which define the bootstrap sample.

data[indices] Creates the bootstrap sample (i.e., subset the provided data by the “indices” parameter). “indices” is automatically provided by the “boot” function; this is the sampling with replacement portion of bootstrapping.

10 / 23

Confidence intervals via bootstrap (cont.)

Step 2: Conduct the bootstrapping

library(boot)
result <- boot(data = height, statistic = samplemean, R = 1000)
result
ORDINARY NONPARAMETRIC BOOTSTRAP
Call:
boot(data = height, statistic = samplemean, R = 1000)
Bootstrap Statistics :
original bias std. error
t1* 5.5 0.00528 0.1402647
11 / 23

View some calculated statistics of boot object

Bootstrap sample means

result$t
[,1]
[1,] 5.38
[2,] 5.52
[3,] 5.46
[4,] 5.50
[5,] 5.64
[6,] 5.60
[7,] 5.40
[8,] 5.66
[9,] 5.54
[10,] 5.50
[11,] 5.50
[12,] 5.70
[13,] 5.32
[14,] 5.36
[15,] 5.52
[16,] 5.60
[17,] 5.46
[18,] 5.48
[19,] 5.40
[20,] 5.54
[21,] 5.50
[22,] 5.48
[23,] 5.56
[24,] 5.38
[25,] 5.40
[26,] 5.32
[27,] 5.46
[28,] 5.60
[29,] 5.64
[30,] 5.54
[31,] 5.72
[32,] 5.32
[33,] 5.48
[34,] 5.64
[35,] 5.52
[36,] 5.32
[37,] 5.32
[38,] 5.34
[39,] 5.60
[40,] 5.36
[41,] 5.52
[42,] 5.68
[43,] 5.68
[44,] 5.32
[45,] 5.50
[46,] 5.46
[47,] 5.50
[48,] 5.48
[49,] 5.38
[50,] 5.64
[51,] 5.36
[52,] 5.54
[53,] 5.64
[54,] 5.38
[55,] 5.70
[56,] 5.66
[57,] 5.50
[58,] 5.54
[59,] 5.62
[60,] 5.50
[61,] 5.50
[62,] 5.54
[63,] 5.30
[64,] 5.62
[65,] 5.64
[66,] 5.36
[67,] 5.34
[68,] 5.36
[69,] 5.26
[70,] 5.70
[71,] 5.54
[72,] 5.54
[73,] 5.68
[74,] 5.38
[75,] 5.62
[76,] 5.78
[77,] 5.52
[78,] 5.52
[79,] 5.24
[80,] 5.54
[81,] 5.44
[82,] 5.68
[83,] 5.82
[84,] 5.78
[85,] 5.58
[86,] 5.86
[87,] 5.54
[88,] 5.46
[89,] 5.60
[90,] 5.36
[91,] 5.42
[92,] 5.58
[93,] 5.40
[94,] 5.26
[95,] 5.48
[96,] 5.58
[97,] 5.44
[98,] 5.48
[99,] 5.50
[100,] 5.50
[101,] 5.46
[102,] 5.28
[103,] 5.26
[104,] 5.28
[105,] 5.48
[106,] 5.36
[107,] 5.66
[108,] 5.62
[109,] 5.80
[110,] 5.72
[111,] 5.42
[112,] 5.36
[113,] 5.80
[114,] 5.68
[115,] 5.44
[116,] 5.56
[117,] 5.64
[118,] 5.28
[119,] 5.46
[120,] 5.28
[121,] 5.46
[122,] 5.64
[123,] 5.62
[124,] 5.50
[125,] 5.32
[126,] 5.52
[127,] 5.26
[128,] 5.66
[129,] 5.40
[130,] 5.78
[131,] 5.50
[132,] 5.30
[133,] 5.66
[134,] 5.50
[135,] 5.60
[136,] 5.26
[137,] 5.66
[138,] 5.52
[139,] 5.56
[140,] 5.48
[141,] 5.30
[142,] 5.32
[143,] 5.34
[144,] 5.56
[145,] 5.56
[146,] 5.86
[147,] 5.38
[148,] 5.40
[149,] 5.72
[150,] 5.48
[151,] 5.54
[152,] 5.58
[153,] 5.62
[154,] 5.50
[155,] 5.50
[156,] 5.52
[157,] 5.52
[158,] 5.82
[159,] 5.68
[160,] 5.50
[161,] 5.46
[162,] 5.48
[163,] 5.26
[164,] 5.56
[165,] 5.54
[166,] 5.42
[167,] 5.52
[168,] 5.44
[169,] 5.48
[170,] 5.64
[171,] 5.64
[172,] 5.58
[173,] 5.36
[174,] 5.48
[175,] 5.34
[176,] 5.38
[177,] 5.44
[178,] 5.32
[179,] 5.48
[180,] 5.58
[181,] 5.44
[182,] 5.38
[183,] 5.74
[184,] 5.32
[185,] 5.48
[186,] 5.34
[187,] 5.72
[188,] 5.56
[189,] 5.52
[190,] 5.50
[191,] 5.40
[192,] 5.60
[193,] 5.28
[194,] 5.36
[195,] 5.68
[196,] 5.64
[197,] 5.52
[198,] 5.54
[199,] 5.34
[200,] 5.28
[201,] 5.76
[202,] 5.48
[203,] 5.60
[204,] 5.52
[205,] 5.52
[206,] 5.54
[207,] 5.52
[208,] 5.56
[209,] 5.54
[210,] 5.40
[211,] 5.46
[212,] 5.84
[213,] 5.64
[214,] 5.30
[215,] 5.48
[216,] 5.54
[217,] 5.50
[218,] 5.34
[219,] 5.36
[220,] 5.38
[221,] 5.44
[222,] 5.44
[223,] 5.52
[224,] 5.26
[225,] 5.82
[226,] 5.38
[227,] 5.80
[228,] 5.32
[229,] 5.22
[230,] 5.32
[231,] 5.52
[232,] 5.30
[233,] 5.54
[234,] 5.80
[235,] 5.34
[236,] 5.62
[237,] 5.66
[238,] 5.34
[239,] 5.62
[240,] 5.66
[241,] 5.32
[242,] 5.62
[243,] 5.62
[244,] 5.52
[245,] 5.36
[246,] 5.54
[247,] 5.50
[248,] 5.50
[249,] 5.66
[250,] 5.52
[251,] 5.54
[252,] 5.44
[253,] 5.50
[254,] 5.50
[255,] 5.70
[256,] 5.72
[257,] 5.64
[258,] 5.78
[259,] 5.54
[260,] 5.42
[261,] 5.38
[262,] 5.38
[263,] 5.48
[264,] 5.50
[265,] 5.28
[266,] 5.32
[267,] 5.48
[268,] 5.48
[269,] 5.66
[270,] 5.54
[271,] 5.70
[272,] 5.80
[273,] 5.78
[274,] 5.50
[275,] 5.86
[276,] 5.42
[277,] 5.66
[278,] 5.38
[279,] 5.48
[280,] 5.66
[281,] 5.44
[282,] 5.68
[283,] 5.64
[284,] 5.66
[285,] 5.50
[286,] 5.56
[287,] 5.60
[288,] 5.58
[289,] 5.48
[290,] 5.36
[291,] 5.30
[292,] 5.54
[293,] 5.52
[294,] 5.34
[295,] 5.52
[296,] 5.54
[297,] 5.66
[298,] 5.42
[299,] 5.38
[300,] 5.44
[301,] 5.50
[302,] 5.36
[303,] 5.56
[304,] 5.52
[305,] 5.34
[306,] 5.34
[307,] 5.74
[308,] 5.64
[309,] 5.76
[310,] 5.40
[311,] 5.50
[312,] 5.40
[313,] 5.42
[314,] 5.46
[315,] 5.70
[316,] 5.52
[317,] 5.64
[318,] 5.68
[319,] 5.32
[320,] 5.40
[321,] 5.42
[322,] 5.50
[323,] 5.44
[324,] 5.50
[325,] 5.46
[326,] 5.68
[327,] 5.32
[328,] 5.30
[329,] 5.32
[330,] 5.50
[331,] 5.66
[332,] 5.66
[333,] 5.32
[334,] 5.58
[335,] 5.50
[336,] 5.32
[337,] 5.68
[338,] 5.48
[339,] 5.50
[340,] 5.50
[341,] 5.48
[342,] 5.36
[343,] 5.60
[344,] 5.34
[345,] 5.48
[346,] 5.38
[347,] 5.42
[348,] 5.80
[349,] 5.48
[350,] 5.48
[351,] 5.26
[352,] 5.54
[353,] 5.44
[354,] 5.50
[355,] 5.80
[356,] 5.26
[357,] 5.50
[358,] 5.64
[359,] 5.30
[360,] 5.48
[361,] 5.34
[362,] 5.62
[363,] 5.50
[364,] 5.82
[365,] 5.68
[366,] 5.52
[367,] 5.44
[368,] 5.78
[369,] 5.50
[370,] 5.52
[371,] 5.36
[372,] 5.68
[373,] 5.50
[374,] 5.36
[375,] 5.42
[376,] 5.38
[377,] 5.68
[378,] 5.46
[379,] 5.40
[380,] 5.80
[381,] 5.66
[382,] 5.46
[383,] 5.54
[384,] 5.56
[385,] 5.32
[386,] 5.60
[387,] 5.48
[388,] 5.40
[389,] 5.54
[390,] 5.28
[391,] 5.50
[392,] 5.34
[393,] 5.54
[394,] 5.68
[395,] 5.32
[396,] 5.36
[397,] 5.50
[398,] 5.44
[399,] 5.54
[400,] 5.42
[401,] 5.66
[402,] 5.56
[403,] 5.32
[404,] 5.82
[405,] 5.56
[406,] 5.44
[407,] 5.72
[408,] 5.62
[409,] 5.72
[410,] 5.66
[411,] 5.60
[412,] 5.52
[413,] 5.48
[414,] 5.58
[415,] 5.30
[416,] 5.46
[417,] 5.26
[418,] 5.38
[419,] 5.34
[420,] 5.56
[421,] 5.44
[422,] 5.46
[423,] 5.66
[424,] 5.62
[425,] 5.52
[426,] 5.32
[427,] 5.70
[428,] 5.66
[429,] 5.50
[430,] 5.62
[431,] 5.36
[432,] 5.64
[433,] 5.66
[434,] 5.40
[435,] 5.26
[436,] 5.58
[437,] 5.48
[438,] 5.70
[439,] 5.48
[440,] 5.74
[441,] 5.52
[442,] 5.42
[443,] 5.52
[444,] 5.64
[445,] 5.78
[446,] 5.30
[447,] 5.52
[448,] 5.38
[449,] 5.46
[450,] 5.36
[451,] 5.30
[452,] 5.34
[453,] 5.62
[454,] 5.50
[455,] 5.52
[456,] 5.66
[457,] 5.60
[458,] 5.48
[459,] 5.50
[460,] 5.66
[461,] 5.48
[462,] 5.40
[463,] 5.32
[464,] 5.52
[465,] 5.34
[466,] 5.68
[467,] 5.72
[468,] 5.60
[469,] 5.40
[470,] 5.58
[471,] 5.50
[472,] 5.46
[473,] 5.62
[474,] 5.44
[475,] 5.52
[476,] 5.54
[477,] 5.40
[478,] 5.74
[479,] 5.34
[480,] 5.46
[481,] 5.52
[482,] 5.30
[483,] 5.50
[484,] 5.60
[485,] 5.76
[486,] 5.52
[487,] 5.50
[488,] 5.70
[489,] 5.62
[490,] 5.40
[491,] 5.46
[492,] 5.48
[493,] 5.34
[494,] 5.54
[495,] 5.40
[496,] 5.38
[497,] 5.52
[498,] 5.54
[499,] 5.50
[500,] 5.42
[501,] 5.54
[502,] 5.70
[503,] 5.36
[504,] 5.34
[505,] 5.36
[506,] 5.46
[507,] 5.38
[508,] 5.34
[509,] 5.40
[510,] 5.44
[511,] 5.48
[512,] 5.74
[513,] 5.46
[514,] 5.40
[515,] 5.26
[516,] 5.44
[517,] 5.50
[518,] 5.52
[519,] 5.78
[520,] 5.50
[521,] 5.30
[522,] 5.30
[523,] 5.34
[524,] 5.42
[525,] 5.28
[526,] 5.56
[527,] 5.50
[528,] 5.66
[529,] 5.66
[530,] 5.62
[531,] 5.30
[532,] 5.62
[533,] 5.50
[534,] 5.82
[535,] 5.58
[536,] 5.66
[537,] 5.30
[538,] 5.84
[539,] 5.56
[540,] 5.40
[541,] 5.30
[542,] 5.84
[543,] 5.42
[544,] 5.24
[545,] 5.60
[546,] 5.58
[547,] 5.60
[548,] 5.56
[549,] 5.82
[550,] 5.34
[551,] 5.70
[552,] 5.64
[553,] 5.48
[554,] 5.36
[555,] 5.32
[556,] 5.48
[557,] 5.48
[558,] 5.48
[559,] 5.64
[560,] 5.48
[561,] 5.38
[562,] 5.62
[563,] 5.38
[564,] 5.52
[565,] 5.44
[566,] 5.78
[567,] 5.58
[568,] 5.66
[569,] 5.40
[570,] 5.46
[571,] 5.30
[572,] 5.48
[573,] 5.48
[574,] 5.64
[575,] 5.34
[576,] 5.48
[577,] 5.72
[578,] 5.40
[579,] 5.58
[580,] 5.48
[581,] 5.44
[582,] 5.68
[583,] 5.66
[584,] 5.64
[585,] 5.66
[586,] 5.34
[587,] 5.50
[588,] 5.38
[589,] 5.50
[590,] 5.96
[591,] 5.66
[592,] 5.54
[593,] 5.48
[594,] 5.36
[595,] 5.64
[596,] 5.42
[597,] 5.42
[598,] 5.54
[599,] 5.34
[600,] 5.48
[601,] 5.68
[602,] 5.32
[603,] 5.30
[604,] 5.42
[605,] 5.48
[606,] 5.52
[607,] 5.58
[608,] 5.36
[609,] 5.38
[610,] 5.66
[611,] 5.64
[612,] 5.46
[613,] 5.34
[614,] 5.46
[615,] 5.48
[616,] 5.56
[617,] 5.52
[618,] 5.40
[619,] 5.32
[620,] 5.38
[621,] 5.26
[622,] 5.44
[623,] 5.50
[624,] 5.76
[625,] 5.66
[626,] 5.30
[627,] 5.30
[628,] 5.38
[629,] 5.56
[630,] 5.48
[631,] 5.40
[632,] 5.30
[633,] 5.28
[634,] 5.50
[635,] 5.48
[636,] 5.40
[637,] 5.54
[638,] 5.50
[639,] 5.54
[640,] 5.68
[641,] 5.30
[642,] 5.34
[643,] 5.20
[644,] 5.80
[645,] 5.34
[646,] 5.50
[647,] 5.34
[648,] 5.50
[649,] 5.48
[650,] 5.42
[651,] 5.52
[652,] 5.62
[653,] 5.50
[654,] 5.62
[655,] 5.50
[656,] 5.74
[657,] 5.62
[658,] 5.54
[659,] 5.34
[660,] 5.32
[661,] 5.42
[662,] 5.32
[663,] 5.66
[664,] 5.60
[665,] 5.52
[666,] 5.48
[667,] 5.36
[668,] 5.64
[669,] 5.52
[670,] 5.66
[671,] 5.62
[672,] 5.42
[673,] 5.34
[674,] 5.60
[675,] 5.28
[676,] 5.46
[677,] 5.44
[678,] 5.66
[679,] 5.70
[680,] 5.54
[681,] 5.64
[682,] 5.54
[683,] 5.52
[684,] 5.78
[685,] 5.38
[686,] 5.80
[687,] 5.42
[688,] 5.38
[689,] 5.48
[690,] 5.32
[691,] 5.56
[692,] 5.28
[693,] 5.28
[694,] 5.52
[695,] 5.52
[696,] 5.46
[697,] 5.50
[698,] 5.54
[699,] 5.30
[700,] 5.50
[701,] 5.62
[702,] 5.60
[703,] 5.44
[704,] 5.44
[705,] 5.66
[706,] 5.36
[707,] 5.46
[708,] 5.36
[709,] 5.46
[710,] 5.36
[711,] 5.52
[712,] 5.52
[713,] 5.44
[714,] 5.50
[715,] 5.64
[716,] 5.40
[717,] 5.60
[718,] 5.50
[719,] 5.50
[720,] 5.32
[721,] 5.40
[722,] 5.54
[723,] 5.42
[724,] 5.30
[725,] 5.36
[726,] 5.30
[727,] 5.40
[728,] 5.48
[729,] 5.68
[730,] 5.40
[731,] 5.52
[732,] 5.50
[733,] 5.46
[734,] 5.58
[735,] 5.44
[736,] 5.52
[737,] 5.64
[738,] 5.46
[739,] 5.50
[740,] 5.62
[741,] 5.54
[742,] 5.68
[743,] 5.64
[744,] 5.52
[745,] 5.50
[746,] 5.64
[747,] 5.34
[748,] 5.80
[749,] 5.54
[750,] 5.64
[751,] 5.48
[752,] 5.52
[753,] 5.50
[754,] 5.72
[755,] 5.64
[756,] 5.52
[757,] 5.62
[758,] 5.36
[759,] 5.40
[760,] 5.50
[761,] 5.72
[762,] 5.54
[763,] 5.48
[764,] 5.64
[765,] 5.68
[766,] 5.72
[767,] 5.36
[768,] 5.46
[769,] 5.56
[770,] 5.64
[771,] 5.48
[772,] 5.60
[773,] 5.66
[774,] 5.36
[775,] 5.36
[776,] 5.54
[777,] 5.34
[778,] 5.78
[779,] 5.48
[780,] 5.64
[781,] 5.40
[782,] 5.46
[783,] 5.40
[784,] 5.44
[785,] 5.78
[786,] 5.30
[787,] 5.64
[788,] 5.24
[789,] 5.70
[790,] 5.44
[791,] 5.38
[792,] 5.38
[793,] 5.72
[794,] 5.50
[795,] 5.34
[796,] 5.64
[797,] 5.74
[798,] 5.54
[799,] 5.46
[800,] 5.48
[801,] 5.42
[802,] 5.48
[803,] 5.50
[804,] 5.40
[805,] 5.64
[806,] 5.60
[807,] 5.52
[808,] 5.42
[809,] 5.50
[810,] 5.70
[811,] 5.52
[812,] 5.50
[813,] 5.38
[814,] 5.36
[815,] 5.38
[816,] 5.62
[817,] 5.24
[818,] 5.56
[819,] 5.40
[820,] 5.44
[821,] 5.50
[822,] 5.62
[823,] 5.36
[824,] 5.56
[825,] 5.48
[826,] 5.40
[827,] 5.50
[828,] 5.48
[829,] 5.50
[830,] 5.32
[831,] 5.54
[832,] 5.58
[833,] 5.66
[834,] 5.54
[835,] 5.50
[836,] 5.82
[837,] 5.72
[838,] 5.36
[839,] 5.54
[840,] 5.62
[841,] 5.28
[842,] 5.48
[843,] 5.50
[844,] 5.50
[845,] 5.60
[846,] 5.38
[847,] 5.36
[848,] 5.34
[849,] 5.36
[850,] 5.38
[851,] 5.66
[852,] 5.50
[853,] 5.34
[854,] 5.38
[855,] 5.60
[856,] 5.40
[857,] 5.24
[858,] 5.66
[859,] 5.74
[860,] 5.66
[861,] 5.48
[862,] 5.50
[863,] 5.46
[864,] 5.70
[865,] 5.66
[866,] 5.46
[867,] 5.42
[868,] 5.30
[869,] 5.50
[870,] 5.48
[871,] 5.36
[872,] 5.38
[873,] 5.48
[874,] 5.58
[875,] 5.42
[876,] 5.50
[877,] 5.54
[878,] 5.50
[879,] 5.54
[880,] 5.22
[881,] 5.28
[882,] 5.26
[883,] 5.32
[884,] 5.50
[885,] 5.48
[886,] 5.64
[887,] 5.40
[888,] 5.56
[889,] 5.36
[890,] 5.64
[891,] 5.64
[892,] 5.38
[893,] 5.32
[894,] 5.40
[895,] 5.36
[896,] 5.48
[897,] 5.34
[898,] 5.68
[899,] 5.50
[900,] 5.82
[901,] 5.74
[902,] 5.56
[903,] 5.52
[904,] 5.46
[905,] 5.54
[906,] 5.94
[907,] 5.78
[908,] 5.38
[909,] 5.78
[910,] 5.38
[911,] 5.30
[912,] 5.36
[913,] 5.62
[914,] 5.50
[915,] 5.54
[916,] 5.32
[917,] 5.26
[918,] 5.38
[919,] 5.36
[920,] 5.84
[921,] 5.42
[922,] 5.52
[923,] 5.50
[924,] 5.68
[925,] 5.30
[926,] 5.46
[927,] 5.48
[928,] 5.64
[929,] 5.46
[930,] 5.82
[931,] 5.30
[932,] 5.72
[933,] 5.82
[934,] 5.46
[935,] 5.32
[936,] 5.64
[937,] 5.44
[938,] 5.64
[939,] 5.40
[940,] 5.48
[941,] 5.48
[942,] 5.54
[943,] 5.54
[944,] 5.30
[945,] 5.66
[946,] 5.50
[947,] 5.48
[948,] 5.44
[949,] 5.46
[950,] 5.46
[951,] 5.68
[952,] 5.92
[953,] 5.46
[954,] 5.74
[955,] 5.40
[956,] 5.64
[957,] 5.42
[958,] 5.72
[959,] 5.56
[960,] 5.50
[961,] 5.34
[962,] 5.36
[963,] 5.70
[964,] 5.44
[965,] 5.52
[966,] 5.64
[967,] 5.42
[968,] 5.48
[969,] 5.72
[970,] 5.58
[971,] 5.30
[972,] 5.44
[973,] 5.36
[974,] 5.54
[975,] 5.66
[976,] 5.66
[977,] 5.32
[978,] 5.56
[979,] 5.62
[980,] 5.26
[981,] 5.48
[982,] 5.54
[983,] 5.38
[984,] 5.60
[985,] 5.68
[986,] 5.64
[987,] 5.48
[988,] 5.70
[989,] 5.92
[990,] 5.42
[991,] 5.34
[992,] 5.48
[993,] 5.72
[994,] 5.54
[995,] 5.34
[996,] 5.46
[997,] 5.84
[998,] 5.24
[999,] 5.46
[1000,] 5.80

Original sample mean

mean(height)
[1] 5.5
12 / 23

Make a histogram of the means of the 1000 bootstrap samples

df <- data.frame(mean=result$t)
library(ggplot2)
ggplot(df, aes(x=mean)) + geom_histogram(col="white")

13 / 23

Understanding the output

result
ORDINARY NONPARAMETRIC BOOTSTRAP
Call:
boot(data = height, statistic = samplemean, R = 1000)
Bootstrap Statistics :
original bias std. error
t1* 5.5 0.00528 0.1402647
mean(height)
[1] 5.5
mean(result$t) - mean(height)
[1] 0.00528
sd(result$t)
[1] 0.1402647
14 / 23

Confidence intervals via bootstrap (cont.)

Method 1:

The 95% bootstrap confidence interval is

c(sort(result$t)[25],sort(result$t)[975])
[1] 5.26 5.80

Method 2:

boot.ci(result, type="all")
Warning in boot.ci(result, type = "all"): bootstrap variances needed for
studentized intervals
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
CALL :
boot.ci(boot.out = result, type = "all")
Intervals :
Level Normal Basic
95% ( 5.220, 5.770 ) ( 5.200, 5.739 )
Level Percentile BCa
95% ( 5.261, 5.800 ) ( 5.280, 5.820 )
Calculations and Intervals on Original Scale
15 / 23

Confidence intervals via bootstrap (cont.)

  1. Normal

  2. Basic

  3. Percentile

  4. BCa (“Bias Corrected and Accelerated)

Reading here: https://www.r-bloggers.com/2019/09/understanding-bootstrap-confidence-interval-output-from-the-r-boot-package/

16 / 23

Hypothesis testing

H0:μ=5

H1:μ5

boot.ci(result, type="all")
Warning in boot.ci(result, type = "all"): bootstrap variances needed for
studentized intervals
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
CALL :
boot.ci(boot.out = result, type = "all")
Intervals :
Level Normal Basic
95% ( 5.220, 5.770 ) ( 5.200, 5.739 )
Level Percentile BCa
95% ( 5.261, 5.800 ) ( 5.280, 5.820 )
Calculations and Intervals on Original Scale

5 is outside the interval. Hence, H0 would be rejected under 0.05 level of significance. We can conclude that population mean is significantly different from 5.

17 / 23

Your turn

Compute bootstrap confidence interval for median.

data: heights

18 / 23

Answer

samplemedian <- function(data, indices) {
return(median(data[indices]))
}
resultmedian <- boot(data = height, statistic = samplemedian, R = 1000)
resultmedian
ORDINARY NONPARAMETRIC BOOTSTRAP
Call:
boot(data = height, statistic = samplemedian, R = 1000)
Bootstrap Statistics :
original bias std. error
t1* 5.4 0.0348 0.1904343
19 / 23

Answer (cont.)

boot.ci(resultmedian, type="all")
Warning in boot.ci(resultmedian, type = "all"): bootstrap variances needed for
studentized intervals
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
CALL :
boot.ci(boot.out = resultmedian, type = "all")
Intervals :
Level Normal Basic
95% ( 4.992, 5.738 ) ( 4.700, 5.600 )
Level Percentile BCa
95% ( 5.2, 6.1 ) ( 5.2, 5.5 )
Calculations and Intervals on Original Scale
Some BCa intervals may be unstable
20 / 23

Jackknife Approach

  • Unlike bootstrap, jackknife is an iterative process. A parameter is calculated on the whole dataset and it is repeatedly recalculated by removing an element one after another.

  • The main application of jackknife is to reduce bias and evaluate variance for an estimator.

21 / 23

Exercise

Construct

  • CIs for median Sepal.Length,

  • CIs for median Sepal.Width and

  • CIs for Spearman's rank correlation coefficient between Sepal.Length and Sepal.Width

using bootstrap sampling.

Data: iris

22 / 23

Slides available at: https://thiyanga.netlify.app/courses/rmsc2020/contentr/

All rights reserved by Thiyanga S. Talagala

23 / 23

What is a bootstrap?

  • Bootstrap is a method of inference.

  • Bradley Efron first introduced this approach in 1979.

    • Link to his original paper is here.

  • Bootstrapping is a computer-intensive procedure.
2 / 23
Paused

Help

Keyboard shortcuts

, , Pg Up, k Go to previous slide
, , Pg Dn, Space, j Go to next slide
Home Go to first slide
End Go to last slide
Number + Return Go to specific slide
b / m / f Toggle blackout / mirrored / fullscreen mode
c Clone slideshow
p Toggle presenter mode
s Start & Stop the presentation timer
t Reset the presentation timer
?, h Toggle this help
Esc Back to slideshow