

B.Sc. (Honours) Statistics Degree Program/ B.Sc. Degree Program Faculty of Applied Sciences University of Sri Jayewardenepura

Course Title	Programming and Data Analysis with R
Course Code	STA 326 2.0
Credit Value	02
Status	Core for BSc (Honours) Statistics students/ Optional for
	others
Year/ Level	Year 3
Semester	1
Theory: Practical: Independent Learning	30:00:70
Other: Pre-requisite course/s	STA 114 2.0 Probability and Distribution Theory I,
	STA 123 2.0 Probability and Distribution Theory II,
	STA 124 1.5 Data Analysis I, STA 213 2.0 Statistical
	Inference, STA 226 1.5 Data Analysis II

Aims of the Course:

- To introduce how to program efficiently in R.
- To provide an in-depth and more advanced coverage of data wrangling, visualisation and analysis methods in the R programming environment.

Intended Learning Outcomes:

On the successful completion of this course, the student should be able to:

- 1. Use data classes, object attributes, data structures in R
- 2. Write user-defined functions in R to solve a given problem.
- 3. Apply control structures in R to control the flow of the program.
- 4. Apply the principles of tidyverse programming and organise complex, messy, data into the most convenient form for analysis or reporting.
- 5. Select effective visualisation and modelling approaches to understand relationships between variables, and make decisions with data.
- 6. Interpret the results of analysis and communicate these to a broad audience.

Course Content:

- 1. R programming basics: Objects in R, Data types, Operations, Installing packages, Control structures, Piping
- 2. Writing functions in R
- 3. Programming and Data analysis with the tidyverse
 - 3.1. Data import and export
 - 3.2. Data wrangling: Tidy data principles, Reshaping data into tidy form, Data transformation
 - 3.3. Data visualization: The grammar of graphics
 - 3.4. Statistical modelling and inference
 - 3.5. Communication: Dynamic reproducible reporting

Scope and Schedule of Teaching - Learning Activities:

Topic	The min (See h The min		of Hr	s	Teaching	Assessment	ILO
No.	Topic/Sub Topic	Т	P	IL	Method	Criteria	Alignment
1	Introduction to R and R stu-	2	0	4	Lecture/ R programming		1
	dio and R Programming ba-				practice questions		
	sics						
2	Data structures in R	2	0	4	Lecture		1
3	Functions in R	2	0	4	Lecture/ Flipped class-	5% of Final	1
					room/ R programming	Marks	
					practice questions		
					FA1: Cheat sheet-		
					lapply family func-		
					tions		-
4	Writing functions in R	2	0	4	Lecture/ R programming		2
				<u>.</u>	practice questions		
5	Control structures	2	0	4	Lecture/ R programming		3
					practice questions		
6	Introduction to the tidyverse	2	0	5	Lecture/ R programming		4
	data science workflow: Data				practice questions		
7	import and export	0					4 0
(Reproducible reporting with	2	0	5	Lecture/ R programming		4, 0
	R Markdown				tual Discussion Forum		
0	Data meangling, Dashaning	0	0	F	Lasture / Virtual Discussion		4
0	data	2	0	5	sion Forum / P. program		4
	data				ming practice questions		
0	Data wrangling: Data ma	2	0	5	Lecture / B programming	10% of Final	4
9	nipulation	2	0	5	practice questions	Marke	4
	Inputation				FA 2. Quiz	Marks	
10	The grammar of graphics	2	0	5	Lecture / R programming	25% of Final	4, 5, 6
	0 0F				practice questions	Marks (5%	_, _, _
					FA3: Virtual discus-	Discussion	
					sion forum and indi-	Forum $+ 20\%$	
					vidual project presen-	Individual	
					tation	project)	
11	Regression Analysis with R	2	0	5	Lecture/ R programming		4, 5, 6
					practice questions		
12	The inverse transform	2	0	5	Lecture/ R programming		5
	method and The method of				practice questions		
	Monte Carlo						
13	Hypothesis testing	2	0	5	Lecture/ R programming		5, 6
	-	_			practice questions		
14	Functionals	2	0	5	Lecture/ R programming		4, 5
				-	practice questions		
15	Revision and ways to con-	2	0	5	Lecture/ R programming		1, 2, 3, 4,
	tinue learning R no matter				journal article		5, 6
	what you choose to be your						
ļ	next step			-			
	Total	30	00	70			

Linking Program Outcomes with ILOs:

Program Outcomes: B.Sc. Honours degree

- 1. Demonstrate competency in theoretical knowledge and practical and/or technical skills in the respective field of specialization (statistics).
- 2. Communicate efficiently and effectively in the respective field of specialization using written, oral, visual and/or electronic forms.
- 3. Facilitate and participate as an empathetic and emotionally intelligent team player with leadership qualities, in a group, diverse team or organization.
- 4. Apply subject-specific knowledge and skills creatively to solve real-world problems by making contextspecific operational decisions while adapting to changing environments.
- 5. Integrate creativity, innovation, and entrepreneurial and managerial proficiencies to build values.
- 6. Implement subject-based solutions in keeping with ethical, societal and environmental norms and need for sustainable development.
- 7. Secure life goals through lifelong learning with the aim of scholarly advancement and/or strengthening professional skills, and ensuring the betterment of the community.

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7
ILO 1	***	*		*			
ILO 2	***	***		**			
ILO 3	**	**			**		
ILO 4	***	***			**		*
ILO 5	***	***	***	***	***	***	**
ILO 6	***	***	***	***	***	***	***

*** - Strongly linked; ** - Medium linked; * - Weekly linked

Program Outcomes: B.Sc. General degree

- 1. Demonstrate competency in theoretical knowledge and practical and/or technical skills in respective subject areas (statistics).
- 2. Communicate efficiently and effectively in the respective subject areas using written, oral, visual and/or electronic forms.
- 3. Facilitate, and participate as an empathetic and emotionally intelligent team player with leadership qualities, in a group, diverse team or organization.
- 4. Apply subject based knowledge and skills creatively in making appropriate judgements in changing situations.
- 5. Integrate creativity and innovation to achieve entrepreneurial competencies.
- 6. Implement solutions in keeping with ethical, societal and environmental norms and need for sustainable development.
- 7. Secure life goals through lifelong learning with the aim of strengthening professional skills, and ensuring the betterment of the community.

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7
ILO 1	***	*		*			
ILO 2	***	***		**			
ILO 3	**	**			**		
ILO 4	***	***			**		*
ILO 5	***	***	***	***	***	***	**
ILO 6	***	***	***	***	***	***	***

*** - Strongly linked; ** - Medium linked; * - Weekly linked

Mode of Assessment:	
Formative Assessment (FA):	FA1 $5\%+{\rm FA2}$ 10% + FA3 $25\%=40\%$ of total marks
Summative Assessment (SA):	End Semester Examination: 2-hour paper covering MCQs and or Short Questions, Structured Essay-type questions and Essay-type question $= 60\%$ of total marks

References:

- Talagala, T. S. (2020). Course website: STA 326 2.0 Programming and Data Analysis with R, *Course website*. https://hellor.netlify.app/
- Wickham, H., & Grolemund, G. (2019). *R for data science: import, tidy, transform, visualize, and model data.* O'Reilly Media, Inc. https://r4ds.had.co.nz/
- Grolemund, G. (2014). Hands-on programming with R: write your own functions and simulations. O'Reilly Media, Inc. https://rstudio-education.github.io/hopr/

Prepared by: Dr Thiyanga S. Talagala email: ttalagala@sjp.ac.lk